Invertible completions of band matrices
نویسندگان
چکیده
منابع مشابه
Sums of Alternating Matrices and Invertible Matrices
A square matrix is said to be alternating-clean if it is the sum of an alternating matrix and an invertible matrix. In this paper, we determine all alternating-clean matrices over any division ring K. If K is not commutative, all matrices are alternating-clean, with the exception of the 1× 1 zero matrix. If K is commutative, all matrices are alternating-clean, with the exception of odd-size alt...
متن کاملcompletions on partial matrices ?
An n × n matrix is called an N0-matrix if all its principal minors are nonpositive. In this paper, we are interested in N0-matrix completion problems, that is, when a partial N0-matrix has an N0-matrix completion. In general, a combinatorially or non-combinatorially symmetric partial N0-matrix does not have an N0-matrix completion. Here, we prove that a combinatorially symmetric partial N0-matr...
متن کاملFountain Codes and Invertible Matrices
This paper deals with Fountain codes, and especially with their encoding matrices, which are required here to be invertible. A result is stated that an encoding matrix induces a permutation. Also, a result is that encoding matrices form a group with multiplication operation. An encoding is a transformation, which reduces the entropy of an initially high-entropy input vector. A special encoding ...
متن کاملPath Connectedness and Invertible Matrices
Though path-connectedness is a very geometric and visual property, math lets us formalize it and use it to gain geometric insight into spaces that we cannot visualize. In these notes, we will consider spaces of matrices, which (in general) we cannot draw as regions in R or R. To begin studying these spaces, we first explicitly define the concept of a path. Definition 1.1. A path in X is a conti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1991
ISSN: 0024-3795
DOI: 10.1016/0024-3795(91)90164-r